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Abstract 

The external rays of the Mandelbrot set are a valuable graphic tool in order to 

study this set. They are drawn using computer programs starting from the 

Böttcher coordinate. However, the drawing of an external ray cannot be 

completed because it reaches a point from which the drawing tool cannot 

continue drawing. This point is influenced by the resolution of the standard for 

floating-point computation used by the drawing program. The IEEE 754 

Standard for Floating-Point Arithmetic is the most widely-used standard for 

floating-point computation, and we analyze the possibilities of the quadruple 

128 bits format of the current IEEE 754-2008 Standard in order to draw external 

rays. When the drawing is not possible, due to a lack of resolution of this 

Standard, we introduce a method to draw external rays based on the escape lines 

and Bézier curves. 

 
Mathematics Subject Classification: 37F45, 68M15 

 

1. Introduction  

As is well known, the Mandelbrot set can be defined by  : (0)  as k
cc f k    , 

where (0)k
cf
  is the k-iteration of the parameter-dependent quadratic function 2( )cf z z c     

(z and c complex) from the initial value 0 0z   (the critical point). 

 In the 1980's, Douady and Hubbard published the external arguments theory of the 

Mandelbrot set [1,2]. Douady popularized this theory [3] by considering a capacitor made of a 
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hollow metallic cylinder with great diameter, whose axis was an aluminum bar shaped in such a 

way that its cross-section was  . If the capacitor is connected to a battery appears an electric 

field between the cylinder and  , with equipotential lines and field lines. The field lines are 

the external rays of Douady and Hubbard, and the numbers associated with the external rays 

(between 0 and 1) are the external arguments of Douady and Hubbard. This electric field is 

extremely complicated because is generated in a capacitor where one of their plates is a fractal. 

For this reason, mathematicians and engineers may be interested in that study. The external rays 

and its external arguments identify graphically and numerically all the periodic components and 

Misiurewicz points (preperiodic points) of   and, therefore, the drawing of the external rays is 

important to study the ordering of  . 

 The computer programs to draw external rays of the Mandelbrot set use the Böttcher 

coordinate ( )c  given by [4]:  
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where c is the complex coordinate of a point outside   and  0
cf c c ,  1 2

cf c c c  , 

 2 2 2( )cf c c c c   ... are the iterates of 2( )cf z z c   from the initial value 0 0z  . The 

potential of c is log ( )c  and the external argument of c is arg ( )c  [2]. All the points of an 

external ray have the same external argument. All the points with the same potential define an 

equipotential line. The external rays are perpendicular to the equipotential lines. 

 The IEEE 754 Standard for Floating-Point Arithmetic [5] is the most widely-used standard 

for floating-point computation, and it is followed by many hardware and software 

implementations. Many computer languages allow or require that some or all arithmetic be 

carried out using IEEE 754 formats and operations. The current version is IEEE 754-2008 that 

includes the original IEEE 754-1985. The resolutions of the three basic formats of this Standard 

are: single 23res  , double 52res   and quadruple 112res  , according to the number of bits of the 

mantissas  (see table 1). 

 As we will see, the drawing of an external ray inside a detail of   is strongly restricted by 

the number of bits of the floating-point arithmetic used by the computer program. For this 

reason, the external rays cannot be drawn in certain details of   with computer programs  [6-

8] using the double 64 bits format of the old IEEE 754-1985 Standard. This is not due to a 

failure of programming but a lack of accuracy of the double 64 bits format. 
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Table 1. Basic formats in the IEEE 754-2008 Standard. 

 Sign Mantissa Exponent 

Single (32 bits) 1 23 8 

Double (64 bits) 1 52 11 

Quadruple (128 bits) 1 112 15 

 

 

 We are interested in the drawing of external rays of   [9-18] and in this paper we will 

analyze the possibilities of the new quadruple 128 bits format of the IEEE 754-2008 Standard. 

Unfortunately, as we will see in Section 5, the resolution of the quadruple format is not 

sufficient in some of the cases, and the same occurs with a hypothetical octuple 256 bits format 

(not defined yet). To avoid this problem, we will introduce in Section 4 a graphical procedure 

based on the escape lines [19,20,21] and Bézier curves [22], which allows us the drawing of the 

external rays of a detail of   when it is not possible to do it using a computer program based 

in the Böttcher coordinate and running with the IEEE 754 Standard. 

  

2. Tools to calculate external arguments 

2.1. Binary expansions 

As is known, there are several hyperbolic components of the same period p in   [23]. The 

binary expansion of the external argument p  of an external ray landing at the root point of a 

period-p hyperbolic component is period-p periodic and the external argument is rational with 

odd denominator [2,24] 

 

1 20.
2 1p p p

a
a a a  


 .                                 (2) 

 

In this equation 1 2 pa a a  are 2base  digits such that 1 2 pa a a a . For instance, the binary 

expansion of the external argument  41 5 3 2 1  , with 3a   and 4p  , is 

0.0011 0.00110011... , and the corresponding external ray lands at a period-4 hyperbolic 

component (see figure 1, where the external rays are drawn with a computer program using the 

double format of IEEE 754 [6]). 
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 The binary expansion of the external argument ,n m  of an external ray landing at a 

Misiurewicz point of  , i.e. a preperiodic point by iteration, is preperiodic of preperiod-n and 

period-m. Besides, the external argument is rational with even denominator 
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  .                                         (3) 

 

Here 1 2 ma a a  and 1 2 nb b b  are 2base  digits such that 1 2 ma a a a  and 1 2 nb b b b . For 

instance, the binary expansion of the external argument  21 6 1 2 2 1   (with 1a  , 0b  , 

1n   and 2m  ) is 0.001  (see figure 1). 

 

 
 

Figure 1. Examples of external arguments of external rays landing at a 

hyperbolic component and a Misiurewicz point. The figure is drawn using a 

computer program working with the double format of  IEEE 754 Standard [6]. 

 

2.2 Rotation number 

Devaney [25] associates a rational number p q  to each primary disc c of the Mandelbrot set (a 

primary disc is directly attached to the main cardioid of the set). The denominator q is the 

period of the disc. The value of p is fixed by seeing the regions of the Julia set of c when we 

superimpose the attracting cycle of ( )cf z  on the Julia set. The point 0 of the attracting cycle lies 

in the largest of these regions and the smallest is located exactly p q  revolutions about in the 

counterclockwise direction. For instance, in figure 2 we can see that 2p   and 5q   in the disc  

0.50 0.56ic    . 

 We would like to note that in our papers (see for example [14]) normally we write the 

rotation number as q p  instead of p q  in order to denominate the period with a p.   
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Figure 2. Julia set of 0.50 0.56i  showing the jumps in the iterative process 2( )cf z z c  . 

 

2.3. Tuning algorithm  

 This algorithm is due to Douady [2]. Let W be a hyperbolic component of period 1p  with 

centre 0c , and 0W  the main cardioid of   with period 1 and centre 0. There is a continuous 

injection :  W    such that  0 0Wc   and  0WW W . Let us suppose the binary 

expansions of the external arguments of the external rays landing at the root point of W are 

 
1 1
,  p p     

1 11 2 1 20. ,  0.p pu u u v v v  . Let x be a landing point on 0W  of period 2p  and 

 Wx x   the landing point on W, of period 1 2p p  that Douady called " 0c  tuned by x". If the 

binary expansions of the external arguments of the external rays landing at x are 

   
2 2 2 21 2 1 2, 0. ... ,  0. ...p p p ps s s t t t    , the corresponding external rays landing at x  have external 

arguments whose binary expansions can be obtained by substituting each bit of  
2 2
,p p    by 

11 2 ... pu u u  if the bit is 0 or by 
11 2 ... pv v v  if the bit is 1. 

 For instance, let us consider the period-4 hyperbolic component with root point located at 

0.15471 1.03104i  . The binary expansions of the external arguments of the external rays 

landing at this point are  4 4,       0.0011,  0.0100 . Let 0.35675x   0.32861i  be the root 

point of a period-5 disc on the main cardioid and    5 5, 0.00001,  0.00010     the binary 

expansions of the external arguments of the external rays landing at this point. The 

corresponding binary expansions of the external arguments of the rays landing at 

0.15255 1.03294ix     are 

 20 20,       0.00110011001100110100,  0.00110011001101000011 . 
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2.4. Narrow hyperbolic component 

A period-p hyperbolic component of the Mandelbrot set is narrow if it contains no component 

of equal or lesser period in its wake [26]. Then, the external arguments 

 (2 1),  (2 1)p pa a    of the external rays landing at the root point of a period-p narrow 

hyperbolic component differ by 1 (2 1)p  , because 1a a   . For instance, the binary 

expansions  4 4,       0.0011,  0.0100 , see figure 1, correspond to a narrow period-4 

hyperbolic component. 

 It is obvious that we need a computer program with precision 2 resprec   better than 

1 (2 1) 2p p   to be able to draw separately the two external rays of a period-p narrow 

hyperbolic component near to its landing point. Taking into account the resolutions of the 

formats of the IEEE 754-2008 Standard (see table 1), the drawing of the two external rays of a 

narrow hyperbolic component is impossible when its period is greater than 23, 52 or 112 and we 

use a single, double or quadruple format respectively. 

 

2.5. Schleicher's algorithm 

The Schleicher's algorithm allows us to find the binary expansions of the external arguments of 

the two external rays landing at the largest disc between two given with rotation numbers 1 1p q  

and 2 2p q , when the binary expansions of the external rays landing at these discs are known (a 

detailed description of the algorithm can be seen in [27]). 

 First, we determine the rotation number of the largest disc by Farey addition [28], i.e. 

       1 1 2 2 1 2 1 2p q p q p p q q    . Second, we assume that the binary expansions of the 

two external rays closest to the 1 2 1 2( ) ( )p p q q   disc are known and they are 
11 20. qu u u   

and 
21 20. ... qv v v  such that 

1 21 2 1 20. 0.q qu u u v v v  . Third, the binary expansions of the 

external rays landing at the 1 2 1 2( ) ( )p p q q   disc are 
1 21 2 1 20. ... ... ,q qu u u v v v  


2 11 2 1 20. ... ...q qv v v u u u . 

 For instance, the higher external argument of the disc with rotation number 1
3  is 0.010  and 

the smaller external argument of the disc with rotation number 2
5  is 0.01001. The biggest disc 

between the two former ones has rotation number 31 2
3 5 8   and external arguments 

 0.01001001,  0.01001010 . 
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2.6. Binary expansions in multiple-spiral medallions 

As is known,   contains small copies of itself (babies Mandelbrot sets, BMSs) which in turn 

contain smaller copies of  , and so on ad infinitum. But the   set is not self-similar. 

Actually, every BMS has its own pattern of external decorations. Some of these decorations are 

called cauliflowers [29], embedded Julia sets [30], or multiple-spiral medallions [11]. 

 Using the symbolic binary expansion, it has been conjectured [11] that the pair of binary 

expansions of the external arguments of the external rays landing at the cusp of the cardioid of 

the central BMS in a multiple-spiral medallion  1 20. ,  0.b b  can be written starting from the 

binary expansions of its parent  1 20. ,  0.p p  and its gene  1 20. ,  0.g g  in the form  

0. .b p p p g       (where *b  is 1b  or 2b , *p  is 1p  or 2p  and *g  is 1g  or 2g ). The binary 

expansions  1 20. ,  0.   of a non-central BMS has the form 0. 0.
j

b p p p       (where *  is 

1  or 2  and j is the level of the BMS [15]). In figure 3 we can see examples of multiple-spiral 

medallions, where the BMSs until the third level are shown.  

 

 

 

Figure 3. Examples of multiple-spiral medallions [13] in the Mandelbrot set showing the first, second and third levels of BMSs. (a) 

Single-spiral medallion 0.1543869 1.0308295i  . (b) Double-spiral medallion 0.16111880 1.03632203i  . (c) Triple-spiral 

medallion 0.15403780 1.03692215i  . 

 

3. The end point of the drawing of an external ray  

When we draw an external ray by means of a computer program using the Böttcher coordinate, 

we observe that the drawing of the ray is interrupted when it comes close to the landing point, 

i.e., the drawing of an external ray has an end point. This limitation is due to a lack of resolution 



 8

of the drawing program that usually works with the floating-point arithmetic of the IEEE 754 

Standard.  

 

 

Figure 4. End point of the drawing of the external ray 0.001  obtained with three different programs working with the double 

format of IEEE 754 Standard. (a) Chéritat’s program [6]. (b) Kawahira’s program [7]. (c) Jung’s program [8]. 

 

 As an example, in figure 4 we can see the drawing of the external ray 3 1 7 0.001     near 

the tangent point of the disc of rotation number 1
3  with the main cardioid, starting from the 

programs of Chéritat [6], Kawahira [7] and Jung [8]. As far as we know, these programs use the 

double format of the IEEE 754 Standard with double 52res  . The end point of the drawing of the 

external ray 0.001 is approximately at 0.088 0.652i  , beneath of the period-51 disc. 

Therefore, we can assume that the end point of the drawing of an external ray occurs when the 

discs of its vicinity have periods about the number of bits of the mantissa of the format of the 

IEEE 754. 
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Figure 5. The drawing of two external rays x  and y  when the difference 

x y   is very small. (a) Ideal case res   . (b) Practical case when 

2 res
x y    . (c) Practical case when 2 res

x y    . 

 

 Let us consider the drawing of two close external rays x  and y  landing at points x and y 

(see figure 5). If the program has res    as in (a), away from points x and y the two external 

rays go together in the same pixels until the graphical bifurcation point g.b.p. where they begin 

to separate. Finally, the landing points x and y would be reached. However, when we use a 

program with an IEEE 754 format, with finite resolution, the landing points cannot be reached, 

and there are two cases. When 2 res
x y    , see (b), the end points appear after reaching the 

g.b.p. When 2 res
x y    , see (c), the end points appear before reaching the g.b.p. 

 

4. Drawing external rays when the resolution of the IEEE 754 is not sufficient  

When the number of bits of the period (or the sum of the number of bits of the preperiod and 

period) of the binary expansion of the external argument of an external ray is greater than the 

number of bits of the quadruple format of the IEEE 754 Standard, obviously is impossible the 

drawing of the external ray near the landing point by means of a computer program running 

with this Standard. In this case we operate as follows (see figure 6, where we obtain the same 

external rays that in figure 1). 

 

 
Figure 6. Reproduction of figure 1 according to Section 4. 

 

 First, we draw the detail of the Mandelbrot set with escape lines (blue colour in figure 6) 

[19-21]. The equation of an escape line is mod ( )n
c ef c r    , where 2er   is the escape radius 

and 0
cf c , 1 2

cf c c  , 2 2 2( )cf c c c    . For 0,1,2n    we have the different escape 

lines. The escape lines are closed curves that have a clear physical meaning: a point c out of the 

escape line n but inside the escape line n 1 need n iterations to leave the circle of radius er  
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(i.e., to escape to infinity). Hence, the escape line  is the boundary of the Mandelbrot set. As 

is well known, if the escape radius is large compared to the size of the set (for instance 510er  ) 

the escape lines can be considered as equipotential lines. The escape lines are obtained as a 

consequence of the iteration process in the drawing of the detail of the Mandelbrot set and they 

do not need to be obtained with the Böttcher coordinate. 

 Second, we draw manually the external rays by means of Bézier curves (red colour in figure 

6) [22] starting from the landing points of the external rays in such a way that they are 

perpendicular to the escape lines. 

 

5. The drawing of the external rays requires great computer resolution 

The figure 7 shows a region of the Mandelbrot set near the tangent point of the disc of rotation 

number 1
3  with the main cardioid. Between the abscises 0.1184  and 0.1178  there are 1163 

pixels and therefore the distance between two consecutive pixels is d   

 0.1184 0.1178 1163  75.1 10 . The figure has been drawn by means of a program using 

the IEEE 754 double format where double 52 162 2 2.2 10res d     , with escape lines (in blue 

colour) and Bézier curves (in red colour) according to Section 4. As we can see next, it is not 

possible to draw the external rays in this figure by means of a computer program using the 

Bötcher coordinate, due to a lack of resolution of the quadruple format of the IEEE 754 

Standard.  

 

 
 

Figure 7. Detail of the Mandelbrot set near the tangent point of the disc with rotation number 1
3 . 
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 In the upper part of the figure 7, there are discs with periods 3 84 , 3 85 , … , 3 91 , 

attached to the disc 1
3 . For example, the external arguments of the external rays landing at the 

tangent point of the disc with period 3 89 267   can be obtained by tuning and they are 

 267 267,     
88

0.001 010,



87
0.001 010001


. Note that the first 262 digits of 267   and 267   are 

the same. Therefore, to be able to draw these external rays separately near the landing point, the 

resolution of the computer program must be greater than 262. Obviously, this resolution exceeds 

the possibilities of the quadruple format (128 bits) of the IEEE 754 Standard. 

 In the lower part of the figure 7 there are discs with periods 3 83 4  , 3 84 4  , … , 

3 90 4   attached to the main cardioid. The external arguments of the external rays landing at 

the tangent point of the disc with period 3 88 4 268    can be obtained by the Schleicher's 

algorithm and they are  268 268,     
88 88

0.001 0001,  0.001 0010
 
 

. Note that this disc is narrow. 

The first 266 digits of 268   and 268   are the same and, again, the external rays 268   and 268   of 

figure 7 cannot be drawn separately with a computer program using the quadruple format 

(neither with the octuple format that it is not defined yet).  

 Taking into account that 267 267 3 268 268            , the external ray 3
  is between rays 

that cannot be drawn. We conclude that the external ray 3
  of figure 7 can not be drawn by a 

computer program using the quadruple format of IEEE 754. In this case, we propose the 

drawing of the external rays according to Section 4. 

 We have shown an example where the double format of IEEE 754 Standard can draw a 

detail of the Mandelbrot set but the quadruple format (more précis) cannot draw the external 

rays in the detail. Hence, the drawing of the external rays in a region of the Mandelbrot set 

needs greater computer resolution than the drawing of the detail itself. 

 

5.1. Example.  

Let us consider the double-spiral medallion [13,15] located at 0.16111880 1.03632203i  . The 

figure 8 shows the location of the medallion and in figure 8(a) we can see his parent 

 1 20. ,  0.p p   0.0011,  0.0100  and his gene  1 20. ,  0.g g   0.001,  0.010  [9,11]. 

 The figure 9 shows the medallion in detail with escape lines (in blue colour) and external 

rays (in red colour) according to Section 4. As is known [15], the binary expansions of the 

external arguments of the external rays landing at the cusp of the central BMS of a double-spiral 
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medallion have symbolic binary expansions  1 20. ,  0.b b  1 2 1 1 20. ,
i

p p p p g



 
1

1 2 10.
i

p p g
 




 with 

1,2,3i   . In the medallion of figure 9 we have 32i   and 

 1 20. ,  0.b b 
32

0.00110100 00110011010,



33
0.00110100 001


. 

Therefore the period of the central BMS is 267, as we easily can verify by direct iteration of 

0.16111880 1.03632203i  . Note that the first 261 bits of the pair  1 20. , 0.b b  are the same. 

 

 
Figure 8. Successive magnifications to locating the double-spiral medallion centred at 

0.16111880 1.03632203i   (the medallion is marked by the arrow). (a) The parent 

   1 20. ,  0. 0.0011,  0.0100p p   in the wake of the gene    1 20. ,  0. 0.001,  0.010g g  . (b) The 

period-4 parent. (c) The valley between the period-(2 4) disc of the parent and the cardioid of the 

parent. (d) The medallion. 
 

 The medallion has two principal tips. One of them can be obtained as the limit of the BMSs 

 1 2 2 10. ,  0.b p b p ,  1 2 2 2 1 10. ,  0.b p p b p p ,  1 2 2 2 2 1 1 10. ,  0.b p p p b p p p … and it is 

   32 33

1 2 2 10. ,  0. 0.00110100 001100110100100,  0.00110100 0010011b p b p  . 

Analogously, the other principal tip is 
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   32 33

1 1 2 20. ,  0. 0.00110100 001100110100011,  0.00110100 0010100b p b p  . 

The two tips have preperiods 267 and periods 4. Also note that the first 261 bits of the pairs 

 1 2 2 10. ,  0.b p b p  and  1 1 2 20. ,  0.b p b p  are the same. 

 It is evident that each one of the binary expansions of the external arguments of the BMSs 

and Misiurewicz points in this medallion must be in the interval 1 1 2 20. ,  0.b p b p    where the first 

261 bits of the binary expansions are the same. We deduce that it is not possible to draw none of 

the external rays inside of this medallion using a computer program working with the quadruple 

format (128 bits) of IEEE 754 Standard, nor with the octuple format (256 bits, not yet defined).  

 However it is possible to draw the external rays of the medallion according to Section 4. In 

figure 9 we can see the external rays landing at the central BMS  1 20. ,  0.b b , the tips 

 1 2 2 10. ,  0.b p b p  and  1 1 2 20. ,  0.b p b p , the two BMSs of the first level, the four BMSs of the 

second level and the eight BMSs of the third level. 
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Figure 9. Double-spiral medallion located at 0.16111880 1.03632203i  showing escape lines (blue colour) and Bézier curves (red 

colour) according to Section 4. 
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6. Conclusions 

 It has been shown that the drawing of the external rays in a detail of the Mandelbrot set, 

using a computer program starting from the Böttcher coordinate and running with the current 

IEEE 754 Standard for Floating-Point Arithmetic, requires more resolution than the drawing of 

the detail itself. For this cause, in certain details of the Mandelbrot set obtained with the 

quadruple format of this Standard (the more précis), it is not possible to draw the external rays 

due to a lack of resolution. In these cases we have introduced a method based on escape lines 

and Bézier curves, which allows the drawing of the external rays. 
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